TODAY'S ASSIGNMENT:

 14.6 \#12-20, 22, 27-32sketch \#12, 13, 22, 27, 28

See check answer sheet \rightarrow for more details and helpful hints

check ALL answers:

14.6 \#12-20, 22, 27-32
\#12a, 22
make interval/frequency table, then SKETCH histogram
(use List and Sort to organize values)
\#13,27,28 SKETCH normal curve (label axes with $\mu, \pm 1 \sigma, \pm 2 \sigma, \pm 3 \sigma$)

Empirical Rule $=$ sketch and use naturally occurring values $68,95,99.7 \%$

Use Calculator $=2^{\text {nd }}$ DISTR option 2 normalcdf (min, max, μ, σ)

Round \% to nearest hundredth!

1.39%	2.5%	2.5%	2.5%
4.01%	4.78%	5.99%	19.43%
36.32%	37.81%	63.06%	
68%	69.76%	82.02%	95%
95%	98.17%	238.3	244.5

NOTES 14.6

 HISTOGRAM: A continuous graph that helps visualize how data is distributed in certain categories.The intervals are called "BINS."
Frequency Distribution

Skewed left

(long "tail" on the left)

Symmetrical

Skewed right

(long "tail" on the right)

NOTES 14.6

The Normal Distribution is a frequency distribution that often occurs when there is a large number of values in a data set.

- The graph is symmetrical.

- The graph is a bell-shaped curve.
- Frequencies are concentrated around the center portion of the graph.

Only a small portion of the population occurs at extreme Values.

- mean=median=mode

$-3 \sigma-2 \sigma-1 \sigma \quad \mu+1 \sigma+2 \sigma+3 \sigma$
68% of data within 1 stand. dev. of the mean
95% of data within 2 stand. dev. of the mean
99.7% of data within 3 stand. dev. of the mean $\sigma=$ standard deviation

Histogram approximates normal curve

Notation used:

$\sigma=$ standard deviation. (sigma)
μ is the symbol often used for the mean of a normal distribution. (mu)
$\overline{\boldsymbol{X}}=$ mean (or arithmetic mean) when analyzing general data.

Calculator command we will use:

Given the boundary lines, find the area (\% shaded) under the curve

2:normalcdf(lower, upper, μ, σ)

Area under the Standard Normal Curve:

The area represents the probability (percent of data) for a given interval of the normal distribution.

Calculator commands we will use today:
$2^{\text {nd }}$ DISTR only use cdf
2:normalcdf(lower, upper, μ, σ)

The entire area under the curve represents all possible outcomes so the total is 100%

Key Press History

Hint: first enter values into a LIST in your calculator, then sort. Use this info to create frequency table and histogram.

9-12 Getting Information from a Histogram A data set is given.

(a) Draw a histogram of the data, using bins (or intervals) of the given size.
(b) Are the data symmetric, skewed, or neither?
(c) Calculate the median and the mean.

$$
\begin{aligned}
& \text { either? } \\
& \leftarrow \text { change instruct } \\
& \text { for } \# 12
\end{aligned}
$$

Enter values into a LIST in your calculator, then sort
\#12a GIVEN: start at 100 , bin size $=50$

Interval	Frequency
$(100 \leq x<150) 100-150$	7
$150-200$	
$200-250$	
$250-300$	
$300-350$	
$350-400$	

check ALL answers:

14.6 \#12-20, 22, 27-32
\#12a, 22
make interval/frequency table, then SKETCH histogram
(use List and Sort to organize values)

Here are some values to get you started!!

Interval	Frequency		check ALL answers: $14.6 \text { \#12-20, 22, 27-32 }$
(100 $\leq x<150$) 100-150	7		\#12a, 22
150-200	9		make interval/frequency table, then SKETCH histogram
200-250	11		(use List and Sort to organize values)
250-300	10		
300-350	8	12	
350-400	3	8	
f_{2}^{4}			

13-16 Using the Normal Distribution (Empirical Rule)

A data set is normally distributed with mean 35 and standard deviation 9.
Use the Empirical Rule to find the proportion of data points that lie in the given interval.
13. Between 26 and 44
14. Between 17 and 53
15. At most 17
16. At least 53
\#13,27,28 SKETCH normal curve (label axes with $\mu, \pm 1 \sigma, \pm 2 \sigma, \pm 3 \sigma$)

Empirical Rule $=$ sketch and use naturally occurring values $68,95,99.7 \%$
$\underline{\text { Use Calculator }}=2^{\text {nd }}$ DISTR option 2 normalcdf (min, max, μ, σ)

Sketch normal curve, label all values, then solve \#13-16!!

13-16 Using the Normal Distribution (Empirical Rule)

A data set is normally distributed with mean 3. and standard deviation $9 .=\sigma$ Use the Empirical Rule sketch curve tinge tiepropartion of data points that lie in the given interval.

13. Between 26 and 44 ixed values

$=68 \%$
14. Between 17 and 53
15. At most 17
16. At least 53
\#13,27,28 SKETCH normal curve (label axes with $\mu, \pm 1 \sigma, \pm 2 \sigma, \pm 3 \sigma$)

Empirical Rule $=$ sketch and use naturally occurring values $68,95,99.7 \%$
$\underline{\text { Use Calculator }}=2^{\text {nd }}$ DISTR option 2 normalcdf (min, max, μ, σ)

13-16 Using the Normal Distribution (Empirical Rule)

A data set is normally distributed with mean 35 and standard deviation 9.
Use the Empirical Rule to find the proportion of data points that lie in the given interval.
13. Between 26 and 44
(14.) Between 17 and $53=95 \%$
15. At most 17
16. At least 53

$35 \pm 9(2)$
add + subtract 2 standard deviations

13-16 Using the Normal Distribution (Empirical Rule)

A data set is normally distributed with mean 35 and standard deviation 9.
Use the Empirical Rule to find the proportion of data points that lie in the given interval.
13. Between 26 and 44
14. Between 17 and 53

17-20 Using the Normal Distribution (Calculator)

A data set is normally distributed with mean 35 and standard deviation 9.
Use a graphing calculator to find the proportion of data points that lie in the given interval.
17. Between 29 and 38
18. Between 15 and 40
19. At least 32
20. At most 21

See hints on the following slides \rightarrow

17-20 Using the Normal Distribution (Calculator)
A data set is normally distributed with mean (35) andstandard deviation 9 .
Use a graphing calculator to find the proportion of data points that lie in the given interval.
(17.) Between 29 and 38 max normalcd $f\left(29,38, \mu \min _{\text {max }}, \frac{\sigma}{9}\right) \approx 3781$

$$
=3781 \%
$$

(18.) Between 15 and 40
normalcdf $(15,40,35,9) \approx .6976$
19. At least 32

$$
=69.76 \%
$$

20. At most 21
always use cdf
Use Calculator $=2^{\text {nd }}$ DISTR option 2
normatcif (min, max, μ, of standard deviation

17-20 Using the Normal Distribution (Calculator)
A data set is normally distributed with mean 3.5 and standard deviation 9.
Use a graphing calculator to find the proportion of data points that lie in the given interval.
17. Between 29 and 38
18. Between 15 and 40
 $\approx 6306 \%$
20. At most 21

Use Calculator $=2^{\text {nd }}$ DISTR option 2 normalcdf ($\boldsymbol{\operatorname { m i n }}, \boldsymbol{\operatorname { m a x }}, \mu, \sigma$ of standard deviation

17-20 Using the Normal Distribution (Calculator)
A data set is normally distributed with mean 35 and standard deviation 9.
Use a graphing calculator to find the proportion of data points that lie in the given interval.
17. Between 29 and 38
18. Between 15 and 40
19. At least 32
 21 and below,

Use Calculator $=2^{\text {nd }}$ DISTR option 2

